Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Содержание

Что такое «точка росы»

На завершающем этапе вычислений потребуется правильно расположить утеплитель, коробки оконных блоков в толще стен. Это необходимо для смещения точки росы наружу, в противном случае избавиться от влаги на стеклах, внутренних стенах с началом отопительного сезона не получится.

Точкой росы называют температурный барьер, при достижении которого из теплого воздуха в эксплуатируемом помещении, имеющим высокую относительную влажность, начинает конденсироваться вода. Для увеличения ресурса силовых конструкций точку росы необходимо вывести за наружную поверхность стены, чтобы кирпич. Древесина, бетон не разрушался под действием влаги.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Кроме того, смещение точки росы внутрь слоя утеплителя приведет к увеличению расхода энергоносителя для обогрева жилища уже на третий сезон эксплуатации. Тплоизолятор намокнет, снизится его теплосопротивление.

Неправильная установка оконных блоков приводит к аналогичной ситуации – откосы будут стабильно влажными всю зиму. Поэтому, нормативы СНиП рекомендуют смещение внутренней плоскости оконного блока:

  • заподлицо с внутренней стеной в срубах, кирпичных коттеджах с кладкой в 1,5 кирпича
  • отступ от наружной плоскости стены от 12,5 см при значительной толщине кладки

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Выбор конструкционных, облицовочных, теплоизоляционных материалов должен осуществляться комплексно. Паропропускная способность отдельных слоев стены должна снижаться изнутри наружу. Принцип этого метода становится понятнее на простом примере:

  • если облицевать фасады коттеджа, выложенные из газобетонных блоков, керамическим кирпичом, клинкером без вентиляционного зазора
  • влажный воздух из помещений свободно преодолеет материал стены, будет остановлен облицовкой
  • блоки начнут разрушаться в агрессивной среде, снизится ресурс здания

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Кроме того, замерзающая нутрии блоков вода будет расширяться, дополнительно разрушая кладку, ослабляя силовой каркас коттеджа. Проблема решается заменой керамики на сайдинг, деревянные облицовки либо созданием вентиляционного зазора, через который влага сможет отводиться воздушными массами.

Присоединяйтесь к обсуждению!
Нам было бы интересно узнать вашу точку зрения, оставьте свое мнение

Примеры утепления зданий в зависимости от теплопроводности

В современном строительстве нормой стали стены, состоящие из двух и даже трёх слоёв материала. Один слой состоит из утеплителя, который подбирается после определённых расчётов. Дополнительно необходимо выяснить, где находится точка росы.

Чтобы организовать точный расчёт необходимо комплексно использовать несколько СниПов, ГОСТов, пособий и СП:

  • СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Редакция от 2012 года;
  • СНиП 23-01-99 (СП 131.13330.2012). «Строительная климатология». Редакция от 2012 года;
  • СП 23-101-2004. «Проектирование тепловой защиты зданий»;
  • Пособие. Е.Г. Малявина «Теплопотери здания. Справочное пособие»;
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). «Здания жилые и общественные. Параметры микроклимата в помещениях»;

Производя вычисления по этим документам, определяют тепловые особенности строительного материала, ограждающего конструкцию, сопротивление тепловой передачи и степень совпадений с нормативными документами. Параметры расчёта исходя из таблицы теплопроводности строительного материала приведены на фото ниже.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

  1. Не ленитесь потратить время на изучение технической литературы по свойствам теплопроводности материалов. Этот шаг сведёт к минимуму финансовые и тепловые потери.
  2. Не игнорируйте особенности климата в вашем регионе. Информацию о ГОСТах по этому поводу можно с лёгкостью отыскать в интернете.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

  1. Прежде, чем приступать к укладке утеплителя, убедитесь, что поверхность стены или перекрытия не имеет влаги. В противном случае через время между поверхностями образуется плесень.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

  1. Если вы планируете монтировать невлагостойкий материал на внешней стене, позаботьтесь о тщательной обработке гидроизоляционным клеем.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

  1. Не стоит производить внутреннее утепление поверхностей синтетическими материалами. Это негативно скажется на вашем здоровье.

Особенности и отличия типов кирпича

Строительное назначение различных марок кирпича разное – это специальный кирпич, облицовочный и строительные марки. При возведении дома используют обычный строительный кирпич, для декорирования фасадов домов – облицовочные изделия, а специальные марки используют для особых условий эксплуатации конструкции из кирпича, например, в печи или камине.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Полнотелые кирпичные изделия, согласно технологии изготовления, имеют ≤ 13% воздушных пустот: такой кирпич подходит для строительства наружных и внутренних стен дома, колонн и столбов, перемычек и арок. Объекты из полнотелого кирпича могут выдерживать повышенную нагрузку из-за высоких показателей прочности по сжатию, изгибанию и морозоустойчивости. Параметры теплоизоляции кирпича, свойства водопоглощения и сцепляемость зависят от степени пористости изделия. Этот кирпич имеет средние показатели сопротивления к теплопередаче, поэтому стены дома рекомендуется делать достаточно толстыми (не менее 0,5 метра), и проводить утепление другими средствами.

Пустотелый кирпич производится с объемом пустот ≤ 45%, поэтому его вес меньше, чем у стандартного полнотелого кирпича. Его используют при строительстве внутренних перегородок, наружных стен и каркасов многоэтажных высотных домов. Форма пустот бывает сквозной или односторонней (закрытой с торца), в форме круга, квадрата, овала или прямоугольника. Формируют пустоты в вертикальном или горизонтальном направлении относительно продольной оси изделия.

Пустоты в и без того небольшом изделии экономят почти половину строительного материала и делают стены теплее. При укладке пустотелого кирпича необходимо контролировать консистенцию цементного раствора – он не должен растекаться по поверхности и заполнять пустоты, которые формируют в стене, о чем писалось выше.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Назначение облицовочного кирпича понятно из его названия – он используется для облицовки фасадов и боковых стен дома. Размеры облицовочных изделий такие же, как и у обычного строительного кирпича (можно приобрести и партию с уменьшенными размерами), что облегчает работу с ним. Кирпич для облицовки часто изготавливают с пустотами, что улучшает его потребительские характеристики – работая с таким кирпичом, можно сэкономить на дополнительной теплоизоляции стен.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Пример марок специальных кирпичей – теплоизолирующие и огнеупорные изделия. Обе марки используют при строительстве печей для обогрева и домашних каминов, а также промышленных плавильных печей. Материал для изготовления – шамотная глина с особыми свойствами огнеупорности. При этом разные технологии изготовления позволяют использовать огнеупорный кирпич для разных условий эксплуатации. Например, кирпич с огнеупорными свойствами может выдержать температуру больше 1600 °С, а теплоизолирующие марки кирпича применяют в технологиях теплоизоляции, например, при нагревании наружных стенок мартеновских печей, а также для предотвращения потерь тепла в зданиях. Для строительства наружных несущих стен дома огнеупорный кирпич не годится – из-за невысокой прочности на сжатие из него можно строить только внутренние перегородки в доме.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Основное предназначение клинкерного кирпича – облицовка фундаментов домов. Эта марка имеет высокий коэффициент морозоустойчивости, механической прочности и водопоглощения, так как для его изготовления используют тугоплавкую глину. Сырой клинкерный кирпич обжигается при более высоких температурах, чем при обжиге обычных марок кирпича.

Популярные статьи  Раковина над стиральной машиной: установка

голоса

Рейтинг статьи

Теплотехнический расчет стен из различных материалов

Среди многообразия материалов для строительства несущих стен порой стоит тяжелый выбор.

Сравнивая между собой различные варианты, одним из немаловажных критериев на который нужно обратить внимание является «теплота» материала. Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление

Второе становится особенно актуальным при отсутствии подведенного к дому газа

Второе становится особенно актуальным при отсутствии подведенного к дому газа

Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа.

Теплозащитные свойства строительных конструкций характеризует такой параметр, как сопротивление теплопередаче (Ro, м²·°C/Вт).

По существующим нормам (СП 50.13330.2012 Тепловая защита зданий.

Актуализированная редакция СНиП 23-02-2003), при строительстве в Самарской области, нормируемое значение сопротивления теплопередачи для наружных стен составляет Ro.норм = 3,19 м²·°C/Вт. Однако, при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного, допускается снижение величины сопротивления теплопередачи, но не менее допустимого значения Ro.тр =0,63·Ro.норм = 2,01 м²·°C/Вт.

В зависимости от используемого материала, для достижения нормативных значений, необходимо выбирать определенную толщину однослойной или конструкцию многослойной стены. Ниже представлены расчеты сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен.

Расчет необходимой толщины однослойной стены

В таблице ниже определена толщина однослойной наружной стены дома, удовлетворяющая требованиям норм по теплозащите.

Требуемая толщина стены определена при значении сопротивления теплопередачи равном базовому (3,19 м²·°C/Вт).

Допустимая — минимально допустимая толщина стены, при значении сопротивления теплопередачи равном допустимому (2,01 м²·°C/Вт).

№ п/п Материал стены Теплопроводность, Вт/м·°C Толщина стены, мм
Требуемая Допустимая
1 Газобетонный блок 0,14 444 270
2 Керамзитобетонный блок 0,55 1745 1062
3 Керамический блок 0,16 508 309
4 Керамический блок (тёплый) 0,12 381 232
5 Кирпич (силикатный) 0,70 2221 1352

Вывод: из наиболее популярных строительных материалов, однородная конструкция стены возможна только из газобетонных и керамических блоков. Стена толщиной более метра, из керамзитобетона или кирпча, не представляется реальной.

Расчет сопротивления теплопередачи стены

Ниже представлены значения сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен из газобетона, керамзитобетона, керамических блоков, кирпича, с отделкой штукатуркой и облицовочным кирпичом, утеплением и без. По цветной полосе можно сравнить между собой эти варианты. Полоса зеленого цвета означает, что стена соответствует нормативным требованиям по теплозащите, желтого — стена соответствует допустимым требованиям, красного — стена не соответствует требованиям

Стена из газобетонного блока

1 Газобетонный блок D600 (400 мм) 2,89 Вт/м·°C
2 Газобетонный блок D600 (300 мм) + утеплитель (100 мм) 4,59 Вт/м·°C
3 Газобетонный блок D600 (400 мм) + утеплитель (100 мм) 5,26 Вт/м·°C
4 Газобетонный блок D600 (300 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,20 Вт/м·°C
5 Газобетонный блок D600 (400 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,88 Вт/м·°C

Стена из керамзитобетонного блока

1 Керамзитобетонный блок (400 мм) + утеплитель (100 мм) 3,24 Вт/м·°C
2 Керамзитобетонный блок (400 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 1,38 Вт/м·°C
3 Керамзитобетонный блок (400 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 3,21 Вт/м·°C

Стена из керамического блока

1 Керамический блок (510 мм) 3,20 Вт/м·°C
2 Керамический блок тёплый (380 мм) 3,18 Вт/м·°C
3 Керамический блок (510 мм) + утеплитель (100 мм) 4,81 Вт/м·°C
4 Керамический блок (380 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,62 Вт/м·°C

Стена из силикатного кирпича

1 Кирпич (380 мм) + утеплитель (100 мм) 3,07 Вт/м·°C
2 Кирпич (510 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 1,38 Вт/м·°C
3 Кирпич (380 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 3,05 Вт/м·°C

Плотность облицовочного кирпича

Облицовочные (лицевые) блоки имеют ровную форму, глянцевую поверхность, обладают средней прочностью и надежной теплоизоляцией. Характеристики плотности фасадных материалов варьируются в пределах от 1300 до 1450 кг/см3. Износостойкость состава обусловлена невысокой пористостью — от 6 до 14%. Кирпичи изготавливают с щелями и применяют для декорирования наружных стен зданий, оформления ограждающих конструкций, парковых декоративных форм и т.д.

Производят и добавочный подвид строительного материала — теплый. Состав отличается большим числом пор, по сравнению со стандартными облицовочными изделиями. Плотность варьируется в пределах от 1100 до 1150 кг/м3.

Облицовочные блоки с глазурированием имеют слой стекловидной массы, непроницаемый для влаги. Повторный обжиг, который положен по технологии изготовления после нанесения глазури, не сказывается на прочности изделий. Характеристики уплотненности у подвида типовые — от 1300 до 1450 кг/м3. Но стоимость состава выше стандартного за счет высоких декоративных качеств.

Таблица теплопроводности материалов на Г

Материал Плотность,
кг/м3
Теплопроводность,
Вт/(м·град)
Теплоемкость,
Дж/(кг·град)
Газо- и пенобетон, газо- и пеносиликат 300…1000 0.08…0.21 840
Газо- и пенозолобетон 800…1200 0.17…0.29 840
Гетинакс 1350 0.23 1400
Гипс формованный сухой 1100…1800 0.43 1050
Гипсокартон 500…900 0.12…0.2 950
Гипсоперлитовый раствор 0.14
Гипсошлак 1000…1300 0.26…0.36
Глина 1600…2900 0.7…0.9 750
Глина огнеупорная 1800 1.04 800
Глиногипс 800…1800 0.25…0.65
Глинозем 3100…3900 2.33 700…840
Гнейс (облицовка) 2800 3.5 880
Гравий (наполнитель) 1850 0.4…0.93 850
Гравий керамзитовый (ГОСТ 9759-83) — засыпка 200…800 0.1…0.18 840
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка 400…800 0.11…0.16 840
Гранит (облицовка) 2600…3000 3.5 880
Грунт 10% воды 1.75
Грунт 20% воды 1700 2.1
Грунт песчаный 1.16 900
Грунт сухой 1500 0.4 850
Грунт утрамбованный 1.05
Гудрон 950…1030 0.3

Пенополистирольные утеплители в домах дачного и коттеджного типа

Многие застройщики используют материал для наружного утепления фасадов и потолочных конструкций дачных домов, которые переоборудуются под круглогодичное проживание. Основной круг применения пенополистирольной теплоизоляции – это отделка фундаментов, отмосток, утепление цементных стяжек под напольную плитку.

В отличие от минеральной ваты, пенополистирол не нуждается в обустройстве пленочной или мастичной гидроизоляции, поэтому может монтироваться непосредственно на ровную поверхность грунта.

  • Оптимальная толщина пенополистирольного утеплителя, уложенного между лагами пола, не требует изменения его высоты. Заделка монтажных зазоров и сопряжений влагостойким шпаклевочным составом позволяет эксплуатировать свойства утеплителя с максимально высокой эффективностью.

  • Фундаментная теплоизоляция существенно уменьшает температурные перепады, а отсутствие в подвале сырости положительно сказывается на комфорте микроклимата в доме, снижении расходов на оплату отопления в зимний период.
  • Пенополистирольные разъемные кожухи блокируют утечку тепла из труб отопления и горячего водоснабжения, исключают промерзание водопроводных и канализационных коммуникаций, расположенных на небольшой глубине.

Более чем умеренная стоимость пенополистирольных материалов дополняется возможностью монтажа своими руками, что позволяет уменьшить стоимость теплоизоляционных работ на 35-40%.

Покупайте прямо сейчас в нашей компании качественный утеплитель Пеноплекс по выгодной цене!

Обзор гигроскопичности теплоизоляции

Высокая гигроскопичность – это недостаток, который нужно устранять.

Гигроскопичность – способность материала впитывать влагу, измеряется в процентах от собственного веса утеплителя. Гигроскопичность можно назвать слабой стороной теплоизоляции и чем выше это значение, тем серьезнее потребуются меры для ее нейтрализации. Дело в том, что вода, попадая в структуру материала, снижает эффективность утеплителя. Сравнение гигроскопичности самых распространенных теплоизоляционных материалов в гражданской строительстве:

Популярные статьи  Что делать, если сломался газовый котел и не включается горячая вода? инструктаж по диагностике и ремонту
Наименование материала Влагопоглощение, % от массы
Минвата 1,5
Пенопласт 3
ППУ 2
Пеноизол 18
Эковата 1

Сравнение гигроскопичности утеплителей для дома показало высокое влагопоглощение пеноизола, при этом данная теплоизоляция обладает способностью распределять и выводить влагу. Благодаря этому, даже намокнув на 30%, коэффициент теплопроводности не уменьшается. Несмотря на то, что у минеральной ваты процент поглощения влаги низкий, она особенно нуждается в защите. Напитав воды, она удерживает ее, не давая выходить наружу. При этом способность предотвращать теплопотери катастрофически снижается.

Чтобы исключить попадание влаги в минвату используют пароизоляционные пленки и диффузионные мембраны. В основном полимеры устойчивы к длительному воздействию влаги, за исключением обычного пенополистирола, он быстро разрушается

В любом случае вода ни одному теплоизоляционному материалу на пользу не пошла, поэтому крайне важно исключить или минимизировать их контакт

Методы определения

Эту информацию получают в ходе процесса измерения термического сопротивления с помощью специального оборудования. Сама процедура и используемые технические средства регламентируются государственным стандартом 7076-99. Он описывает требования к образцу, прибору, градуировке и допускает проведение испытаний лишь по двум схемам – ассиметричной и симметричной.

Сущность обоих методов заключается в том, что создается стационарный тепловой поток, который проходит через образец плоской формы. Толщина образца известна, а направление потока выбирается перпендикулярно наибольшим граням. В ходе процесса исследования производится измерение величины плотности теплового потока, а также температуры противоположных граней.

Число образцов, которое необходимо использовать для чистоты эксперимента, регламентируется для каждого конкретного вида бетона. Как правило, подобная информация содержится в государственном стандарте на конкретный материал. В том случае, когда ГОСТ не содержит подобных данных, число образцов выбирают равным пяти.

В ходе испытания в помещении должны поддерживаться определенные условия: уровень относительной влажности воздуха должен находиться в пределах 10% от 50-процентной отметки. Абсолютная температура в процессе испытаний должна находиться в пределах 290-300 К.

Коэффициент теплопередачи

Коэффициент теплопередачи указывает значение теплового потока (в ваттах), который будет проходить через элементарную площадь 1 м2 данного материала при перепаде температур в 1 К. Таким образом, коэффициент теплопередачи имеет размерность [Вт/(м2хК)] (Ватт на квадратный метр и градус Кельвина). Чем лучше теплоизоляция, тем меньше значение коэффициента теплопередачи U и, соответственно, тем меньше будут тепловые потери конструктивного элемента здания. Коэффициент теплопроводности X характеризует способность конкретного материала пропускать тепло. Этот коэффициент имеет следующую размерность: [Вт/(мхК)]. Таким образом, чем меньше значение X, тем лучше подходит конкретный строительный материал в качестве теплоизолятора. Многие распространенные теплоизоляционные материалы, например, минеральное волокно или волокнистая целлюлоза, имеют значение X, равное 0,040 Вт/мхК и потому принадлежат к материалам группы теплопроводности 040. По аналогии с этим определением, материалы, коэффициент теплопроводности которых составляет X = 0,030 Вт/мхК (например, различные виды вспененного полиуретана), относятся к группе теплопроводности 030. Коэффициент теплопередачи двухслойного конструктивного элемента здания (например, стены) вычисляется по следующей формуле через теплопроводность и толщину соответствующего элемента или, соответственно, слоя конкретного материала.

Эмпирическое правило Значение коэффициента теплопередачи U, составляющее 1 Вт/(м2хК), соответствует передаче примерно 60 кВтч/(м2хгод) при температуре в помещении 20 °С и наружных температурах, соответствующих климату Германии.

Если потребление тепловой энергии составляет, например, 55 кВтч/(м2хгод) плюс 12,5 кВтч/(м2хгод) на горячее водоснабжение, то требования стандарта Effizienzhaus 70 по потреблению первичной энергии могут быть удовлетворены только в случае, если в дополнение к ископаемому топливу будет использоваться энергия из возобновляемых источников (например, солнечная энергия, биотопливо и т. п.). Только за счет потребления дополнительной энергии из возобновляемых источников с коэффициентом использования первичной энергии (Primarenergiefaktor) от 0,0 (солнечная энергия) или 0,2 (древесное топливо) можно добиться стопроцентного удовлетворения потребностей в тепловой энергии, используя при этом только 70% традиционного топлива. Традиционные отопительные системы, использующие отопительные котлы, работающие на жидком или газообразном котельном топливе (получаемом из нефти и природного газа), всегда требуют большего объема первичной энергии, чем вы потребляете на свои нужды. Поэтому так называемый коэффициент затрат производства еg, имеет значение, превышающее 1 (с учетом коэффициента производительности котла). Значения коэффициента затрат установки еА (с учетом кпд всей системы отопления, включая коэффициент затрат первичной энергии fp) тоже заметно превышают 1,0 (фактически — от 1,3 до 1,8). Однако спросом пользуются отопительные системы с как можно более низким коэффициентом затрат установки; наиболее выгодными и предпочтительными считаются такие, для которых коэффициент ер приближается к 1. Такие отопительные системы покрывают потребности в тепловой энергии за счет использования возобновляемых источников энергии (например, солнечная энергия, гранулированное древесное топливо) или же производят за счет сжигания топлива из нефти и газа гораздо больше тепловой энергии, нежели требуется вам. Теплоизоляция старых зданий

Назначение теплопроводности

Так как теплопроводность – это показатель передачи тепловой энергии от нагреваемых предметов к предметам с более низкой температурой, то процесс происходит до тех пор, пока градусы не уравняются. При построении зданий желательно применять материалы с минимальным показателем теплопроводности.

Для уменьшения нагрева помещения от солнечных лучей используются покрытия с отражающей поверхностью (оцинковка, зеркальные панели), а для увеличения применяются вещества, которые хорошо поглощают свет (битум, рубероид).

Такое понятие, как коэффициент теплопроводности, обозначает количество проходящего тепла через 1 м толщины материала за 1 час. Его используют для расчёта характеристики теплоизоляционных материалов, которые потребуются для сбережения тепла внутри помещения, а также способности сырья быстро отводить или дольше сдерживать энергию внутри конструкции.

Светоотражающий утеплитель Источник vystroim.com

Материалы с высокой проводимостью используются в качестве основы для радиаторов и нагревательных труб. Для производства применяют алюминий, медь или сталь из-за их высокой плотности и хорошей передачи энергии. Для утепления используют сырье с низкой теплопроводностью и высокой пористостью. Например, войлок или стекловолокно способствуют улучшению энергетической эффективности.

https://youtube.com/watch?v=afnAhqVGX9w

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность

Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Популярные статьи  Американский стиль в интерьере квартиры или дома

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.

Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.

Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором. Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором
Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов. Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью
Влажность – злокачественный фактор, повышающий скорость прохождения тепла

Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.

«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Зачем нужно знать теплопроводность строительных материалов?

Применение этого коэффициента в строительстве более чем обосновано. Проблема сохранения тепла в зданиях и сооружениях в последнее время стала весьма актуальна.

Речь здесь идет о банальной экономии, которая, в масштабах села или города принимает внушительные размеры. Согласитесь, чтобы добиться комфортной температуры в жилом доме, необходимо достаточно топлива. А если стены имеют плохую теплоизоляцию, количество топлива увеличивается в разы.

Принцип — «толще стена – теплее в доме» является финансово нецелесообразен. Поэтому основой любой методики расчета тепловых потерь зданий является оперирование этой величиной.

Это актуально как для многоквартирных высотных домов, так и для частных жилищ в селе или за городом.

Все показатели теплопроводности подробно рассмотрены здесь — http://dearhouse.ru/materialy/teploprovodnost-stroitelnyx-materialov/, а в этой статье мы коснемся наиболее популярных материалов.

Эта физическая величина исчисляется в Вт/м* К

Существует два вида строительных материалов, для которых важно учитывать объем тепловой энергии, проходящей через них:

  • Каркасные: кирпич, бетон, дерево и т.д. Из них строят несущие и межкомнатные стены, элементы кровли и пола.
  • Теплоизоляционные. Они предназначены для улучшения характеристик каркасных материалов. Не рассчитаны на большие механические нагрузки.

Из этого легко сделать вывод, что сам дом, его основание, монтируется из каркасных материалов. Они, в свою очередь, покрываются снаружи и внутри теплоизоляционными. Таким образом стены частного дома становятся достаточно устойчивыми к перепаду температуры на улице.

Для теплоизоляционных видов значение теплопроводности является определяющим.

Например, для минеральной ваты оно составляет 0,07 Вт/м* К, а для пенопласта – 0,041 Вт/м* К

Поэтому важно рассмотреть каркасные виды строительных материалов, так как они будут характеризовать основные тепловые потери в здании

Теплопроводность каркасных строительных материалов

До последнего времени наилучшими теплоизоляционными свойствами обладали дома, построенные из дерева.

Коэффициент теплопроводности сосны, например, составляет всего 0,18 Вт/м* К. Однако существует множество факторов, которые могут повлиять на этот показатель.

Важнейшим из них является плотность и влажность древесины. Именно поэтому для строительства зачастую используют бревна или брусья, прошедшие специальную предварительную подготовку.

У каждого вида древесины свои показатели теплопроводности. Так дом из бруса сосны будет достаточно теплым, а вот из осины или липы строить вообще не принято.

Развитие новых технологий привело к появлению газосиликата – ячеистого материала. Он представляет собой бетонную основу, которая с помощью автоклавной обработки и добавления алюминиевой пудры образует пористую структуру.

Воздушные камеры значительно улучшают показатель теплопроводности, который даже лучше, чем у дерева – 0,12 Вт/м* К, при плотности материала 500 кг/м³.

Несколько худшими энергосберегающими характеристиками обладает пенобетон – 0,38 Вт/м* К.

Но несмотря на столь ощутимую разницу, газосиликат стоит значительно больше, чем пенобетон. Поэтому предпочтение зачастую отдается последнему.

К классическому материалу возведения зданий можно смело отнести кирпич. Благодаря большому выбору изделий различных размеров и конфигураций, теплопроводность для кирпича имеет различные значения. В таблице представлены характеристики наиболее часто встречающихся видов. 

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Худшими значениями обладают плотные бетонные растворы. Но они применяются для капитального строительства в качестве перекрытий и основного каркаса.

Поэтому для многоэтажных зданий характерно использование двух типов – бетон и кирпич. В таблице показаны коэффициенты теплопроводности для бетона и раствора. 

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Для выбора определенного вида материалов необходимо ориентироваться, прежде всего, на эксплуатационные характеристики здания в совокупности с климатическими особенностями региона.

Они будут основными критериями при анализе параметров строительных материалов, а в частности – коэффициента теплопроводности.  

Если у вас возникли вопросы по строительству, отправляйтесь на наш строительный форум и задайте их там. Наши специалисты подскажут, как оптимально провести работу. 

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: